Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications
- Authors
- Park, Jihong; Samarakoon, Sumudu; Elgabli, Anis; Kim, Joongheon; Bennis, Mehdi; Kim, Seong-Lyun; Debbah, Merouane
- Issue Date
- 5월-2021
- Publisher
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Keywords
- 5G mobile communication; 6G; Data models; Distributed databases; Network topology; Servers; Training; Wireless sensor networks; beyond 5G; beyond federated learning (FL); communication efficiency; distributed machine learning
- Citation
- PROCEEDINGS OF THE IEEE, v.109, no.5, pp.796 - 819
- Indexed
- SCIE
SCOPUS
- Journal Title
- PROCEEDINGS OF THE IEEE
- Volume
- 109
- Number
- 5
- Start Page
- 796
- End Page
- 819
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/137430
- DOI
- 10.1109/JPROC.2021.3055679
- ISSN
- 0018-9219
- Abstract
- Machine learning (ML) is a promising enabler for the fifth-generation (5G) communication systems and beyond. By imbuing intelligence into the network edge, edge nodes can proactively carry out decision-making and, thereby, react to local environmental changes and disturbances while experiencing zero communication latency. To achieve this goal, it is essential to cater for high ML inference accuracy at scale under the time-varying channel and network dynamics, by continuously exchanging fresh data and ML model updates in a distributed way. Taming this new kind of data traffic boils down to improving the communication efficiency of distributed learning by optimizing communication payload types, transmission techniques, and scheduling, as well as ML architectures, algorithms, and data processing methods. To this end, this article aims to provide a holistic overview of relevant communication and ML principles and, thereby, present communication-efficient and distributed learning frameworks with selected use cases.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.