Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration
- Authors
- Hong, Soo Yeong; Jee, Sung Min; Ko, Youngpyo; Cho, Jinhan; Lee, Keun Hyung; Yeom, Bongjun; Kim, Heesuk; Son, Jeong Gon
- Issue Date
- 22-2월-2022
- Publisher
- AMER CHEMICAL SOC
- Keywords
- stretchable lithium-ion battery; physically cross-linked organogels; stretchable current collector; all-component intrinsically stretchable battery; printing on stretch fabric
- Citation
- ACS NANO, v.16, no.2, pp.2271 - 2281
- Indexed
- SCIE
SCOPUS
- Journal Title
- ACS NANO
- Volume
- 16
- Number
- 2
- Start Page
- 2271
- End Page
- 2281
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/137598
- DOI
- 10.1021/acsnano.1c08405
- ISSN
- 1936-0851
- Abstract
- For next-generation wearable and implantable devices, energy storage devices should be soft and mechanically deformable and easily printable on any substrate or active devices. Herein, we introduce a fully stretchable lithium-ion battery system for free-form configurations in which all components, including electrodes, current collectors, separators, and encapsulants, are intrinsically stretchable and printable. The stretchable electrode acquires intrinsic stretchability and improved interfacial adhesion with the active materials via a functionalized physically cross-linked organogel as a stretchable binder and separator. Intrinsically stretchable current collectors are fabricated in the form of nanocomposites consisting of a matrix with excellent barrier properties without swelling in organic electrolytes and nanostructure-controlled multimodal conductive fillers. Due to structural and materials freedoms, we successfully fabricate several types of stretchable lithium-ion battery that reliably operates under various stretch deformations with capacity and rate capability comparable with a nonstretchable battery over 2.5 mWh cm(-2) at 0.5 C, even under high mass loading conditions over 10 mg cm(-2), including stacked configuration, direct integration on both sides of a stretch fabric, and application of various electrode materials and electrolytes. Especially, our stretchable battery printed on a stretch fabric also exhibits high performance and stretch/longterm stabilities in the air even with wearing and pulling.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.