Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Integrating Satellite Rainfall Estimates with Hydrological Water Balance Model: Rainfall-Runoff Modeling in Awash River Basin, Ethiopia

Authors
Adane, Girma BerheHirpa, Birtukan AbebeGebru, Belay ManjurSong, CholhoLee, Woo-Kyun
Issue Date
Mar-2021
Publisher
MDPI
Keywords
Awash River Basin; GR2M Hydrologic Model; PERSIANN-CDR
Citation
WATER, v.13, no.6
Indexed
SCIE
SCOPUS
Journal Title
WATER
Volume
13
Number
6
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/137763
DOI
10.3390/w13060800
ISSN
2073-4441
Abstract
Hydrologic models play an indispensable role in managing the scarce water resources of a region, and in developing countries, the availability and distribution of data are challenging. This research aimed to integrate and compare the satellite rainfall products, namely, Tropical Rainfall Measuring Mission (TRMM 3B43v7) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), with a GR2M hydrological water balance model over a diversified terrain of the Awash River Basin in Ethiopia. Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), coefficient of determination (R-2), and root mean square error (RMSE) and Pearson correlation coefficient (PCC) were used to evaluate the satellite rainfall products and hydrologic model performances of the basin. The satellite rainfall estimations of both products showed a higher PCC (above 0.86) with areal observed rainfall in the Uplands, the Western highlands, and the Lower sub-basins. However, it was weakly associated in the Upper valley and the Eastern catchments of the basin ranging from 0.45 to 0.65. The findings of the assimilated satellite rainfall products with the GR2M model exhibited that 80% of the calibrated and 60% of the validated watersheds in a basin had lower magnitude of PBIAS (<+/- 10), which resulted in better accuracy in flow simulation. The poor performance with higher PBIAS (>=+/- 25) of the GR2M model was observed only in the Melka Kuntire (TRMM 3B43v7 and PERSIANN-CDR), Mojo (PERSIANN-CDR), Metehara (in all rainfall data sets), and Kessem (TRMM 3B43v7) watersheds. Therefore, integrating these satellite rainfall data, particularly in the data-scarce basin, with hydrological data, generally appeared to be useful. However, validation with the ground observed data is required for effective water resources planning and management in a basin. Furthermore, it is recommended to make bias corrections for watersheds with poorlyww performing satellite rainfall products of higher PBIAS before assimilating with the hydrologic model.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Woo Kyun photo

LEE, Woo Kyun
College of Life Sciences and Biotechnology (Division of Environmental Science and Ecological Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE