Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

머신러닝을 이용한 태양광 발전량 예측 모델 비교A Comparison of Machine Learning Models in Photovoltaic Power Generation Forecasting

Other Titles
A Comparison of Machine Learning Models in Photovoltaic Power Generation Forecasting
Authors
이용택김두형신우석김창기김현구한성원
Issue Date
2021
Publisher
대한산업공학회
Keywords
Deep Learning; Machine Learning; Photovoltaic Generation Forecasting; Predict of solar power generation
Citation
대한산업공학회지, v.47, no.5, pp.444 - 458
Indexed
KCI
Journal Title
대한산업공학회지
Volume
47
Number
5
Start Page
444
End Page
458
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/138338
ISSN
1225-0988
Abstract
The amount of new renewable energy generation is increasing worldwide every year. Among many new renewable energy sources, solar energy generation using solar energy accounts for the highest proportion of new renewable energy generation. There is a variation in power production because solar power generation is more affected by climate conditions compared to power generation using crude oil or oil. In order to accurately predict solar energy generation dependent on climate variables, this study compares the performance of machine learning-based solar power generation prediction models using weather forecast data from the current forecast technology, Numeric Weather Prediction (NWP). In this study, we experimented on two NWP types, and 7 machine learning models depending on 21 photovoltaic(pv) power stations. Based on results, we select the model with the lowest statistical indicators nMAE(%) by region as the optimal model for the region. Finally, experimental results show that the 7-Block ANN model devised in this study is better than conventional machine learning models.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Han, Sung Won photo

Han, Sung Won
공과대학 (산업경영공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE