Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

COMMA: Propagating Complementary Multi-Level Aggregation Network for Polyp Segmentation

Authors
Shin, WooseokLee, Min SeokHan, Sung Won
Issue Date
Feb-2022
Publisher
MDPI
Keywords
colorectal cancer; colonoscopy; polyp segmentation; deep learning; convolutional neural network
Citation
APPLIED SCIENCES-BASEL, v.12, no.4
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SCIENCES-BASEL
Volume
12
Number
4
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/139395
DOI
10.3390/app12042114
ISSN
2076-3417
Abstract
Colonoscopy is an effective method for detecting polyps to prevent colon cancer. Existing studies have achieved satisfactory polyp detection performance by aggregating low-level boundary and high-level region information in convolutional neural networks (CNNs) for precise polyp segmentation in colonoscopy images. However, multi-level aggregation provides limited polyp segmentation owing to the distribution discrepancy that occurs when integrating different layer representations. To address this problem, previous studies have employed complementary low- and high- level representations. In contrast to existing methods, we focus on propagating complementary information such that the complementary low-level explicit boundary with abstracted high-level representations diminishes the discrepancy. This study proposes COMMA, which propagates complementary multi-level aggregation to reduce distribution discrepancies. COMMA comprises a complementary masking module (CMM) and a boundary propagation module (BPM) as a multi-decoder. The CMM masks the low-level boundary noises through the abstracted high-level representation and leverages the masked information at both levels. Similarly, the BPM incorporates the lowest- and highest-level representations to obtain explicit boundary information and propagates the boundary to the CMMs to improve polyp detection. CMMs can discriminate polyps more elaborately than prior CMMs based on boundary and complementary representations. Moreover, we propose a hybrid loss function to mitigate class imbalance and noisy annotations in polyp segmentation. To evaluate the COMMA performance, we conducted experiments on five benchmark datasets using five metrics. The results proved that the proposed network outperforms state-of-the-art methods in terms of all datasets. Specifically, COMMA improved mIoU performance by 0.043 on average for all datasets compared to the existing state-of-the-art methods.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Han, Sung Won photo

Han, Sung Won
공과대학 (School of Industrial and Management Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE