An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder
- Authors
- 안준용
- Issue Date
- 11월-2019
- Publisher
- NATURE PUBLISHING GROUP
- Citation
- MOLECULAR PSYCHIATRY, v.24, no.11, pp.1707 - 1719
- Indexed
- SCIE
SCOPUS
- Journal Title
- MOLECULAR PSYCHIATRY
- Volume
- 24
- Number
- 11
- Start Page
- 1707
- End Page
- 1719
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/139676
- ISSN
- 1359-4184
- Abstract
- A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Health Sciences > School of Biosystems and Biomedical Sciences > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.