Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Heterostructure carbon-packed MoSSe nanospheres for flexible ReRAM and synapse devices

Full metadata record
DC Field Value Language
dc.contributor.authorRani, Adila-
dc.contributor.authorKhot, Atul C.-
dc.contributor.authorJang, Il Gyu-
dc.contributor.authorKim, Tae Geun-
dc.date.accessioned2022-04-12T01:43:07Z-
dc.date.available2022-04-12T01:43:07Z-
dc.date.created2022-04-12-
dc.date.issued2022-04-15-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/140071-
dc.description.abstractThis paper reports on the synthesis of vacancy-assisted carbon-packed MoSSe (C@MoSSe) nanospheres and their use in memristor and neuromorphic devices. The heterostructure C@MoSSe nanospheres were fabricated using simple hydrothermal and sonication methods to synthesize large-scale, uniform C@MoSSe films on flexible substrates. The carbon skeleton, tightly adhered to the heterostructure MoSSe nanospheres, helped assign low sp(2) characteristics to the vacancies on the defective surfaces of the MoSSe nanospheres, thereby facilitating the realization of highly stable memristor and neuromorphic performance. In addition, the defects in the crystal lattice of the pure phase of MoSSe increased the band gap (around 4.39 eV) to be larger than the bulk and Janus structure of MoSSe (1.2 and 1.9 eV, respectively), resulting in carrier transport owing to trap filling. The C@MoSSe-based memristor successfully mimicked the basic and complex properties of synaptic plasticity, with a critical time window of around 460 mu s, lower than that of the human brain. Bipolar memory performance, such as a high on/off current ratio, a reasonably low operating voltage, and stability, depended on the thickness of the C@MoSSe layers. The findings demonstrate the application potential of C@MoSSe-based memristors and can promote the realization of large-scale neuromorphic circuits. (C) 2021 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectTRANSITION-METAL DICHALCOGENIDES-
dc.subject2-DIMENSIONAL MATERIALS-
dc.subjectRESISTIVE MEMORY-
dc.subjectOPPORTUNITIES-
dc.subjectNANOSHEETS-
dc.subjectMOSE2-
dc.titleHeterostructure carbon-packed MoSSe nanospheres for flexible ReRAM and synapse devices-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Tae Geun-
dc.identifier.doi10.1016/j.carbon.2021.12.057-
dc.identifier.scopusid2-s2.0-85121740727-
dc.identifier.wosid000760355200011-
dc.identifier.bibliographicCitationCARBON, v.189, pp.104 - 112-
dc.relation.isPartOfCARBON-
dc.citation.titleCARBON-
dc.citation.volume189-
dc.citation.startPage104-
dc.citation.endPage112-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusTRANSITION-METAL DICHALCOGENIDES-
dc.subject.keywordPlus2-DIMENSIONAL MATERIALS-
dc.subject.keywordPlusRESISTIVE MEMORY-
dc.subject.keywordPlusOPPORTUNITIES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusMOSE2-
dc.subject.keywordAuthorHeterostructure-
dc.subject.keywordAuthorCarbon-packed (C@MoSSe)-
dc.subject.keywordAuthorNanospheres-
dc.subject.keywordAuthorResistive switching-
dc.subject.keywordAuthorMemristic effect-
dc.subject.keywordAuthorSynaptic effect-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae geun photo

Kim, Tae geun
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE