Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Changes in high-temperature thermal properties of modified YSZ with various rare earth doping elements

Authors
Jeon, HakbeomLee, InhwanOh, Yoonsuk
Issue Date
15-3월-2022
Publisher
ELSEVIER SCI LTD
Keywords
Thermal barrier coatings; Modified YSZ; Thermal conductivity; High-temperature thermal property
Citation
CERAMICS INTERNATIONAL, v.48, no.6, pp.8177 - 8185
Indexed
SCIE
SCOPUS
Journal Title
CERAMICS INTERNATIONAL
Volume
48
Number
6
Start Page
8177
End Page
8185
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/140088
DOI
10.1016/j.ceramint.2021.12.020
ISSN
0272-8842
Abstract
To protect the high-temperature components of gas turbines, 6-8 wt.% yttria stabilised zirconia (YSZ) has been extensively used as a thermal barrier coating (TBC) material. However, its application is severely limited at high temperatures because of zirconia phase transition and sintering densification above 1200 degrees C. This study developed modified YSZ with enhanced high-temperature thermal properties owing to the addition of various rareearth doping elements. Among the various rare earth-doped compositions, all the thermal properties were significantly improved in compositions containing scandium, gadolinium, and dysprosium. Furthermore, in the selected compositions, the high-temperature thermal properties were analysed under heat treatment conditions of 1300 degrees C, with a target turbine inlet temperature (TIT) of 1500 degrees C. The high-temperature phase stability of the tetragonal phase was significantly improved in the newly developed compositions, and they exhibited glass-like low thermal conductivity (similar to 0.984 W/mK) due to the influence of lattice distortion caused by the differences in the substituent-ion mass and size, and the oxygen vacancies. Moreover, there was notable improvement in the thermal expansion coefficient (similar to 11 x 10(-6)/K) and resistance to high-temperature densification.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, In Hwan photo

Lee, In Hwan
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE