Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Vis-NIR Spectroscopy and Machine Learning Methods for the Discrimination of Transgenic Brassica napus L. and Their Hybrids with B. juncea

Authors
Sohn, Soo-InPandian, SubramaniOh, Young-JuZaukuu, John-Lewis ZiniaNa, Chae-SunLee, Yong-HoShin, Eun-KyoungKang, Hyeon-JungRyu, Tae-HunCho, Woo-SukCho, Youn-Sung
Issue Date
2월-2022
Publisher
MDPI
Keywords
Brassica napus; Brassica juncea; genetically modified crops; F-1 hybrid; Vis-NIR spectroscopy; chemometrics; deep learning
Citation
PROCESSES, v.10, no.2
Indexed
SCIE
SCOPUS
Journal Title
PROCESSES
Volume
10
Number
2
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/140470
DOI
10.3390/pr10020240
ISSN
2227-9717
Abstract
The rapid advancement of genetically modified (GM) technology over the years has raised concerns about the safety of GM crops and foods for human health and the environment. Gene flow from GM crops may be a threat to the environment. Therefore, it is critical to develop reliable, rapid, and low-cost technologies for detecting and monitoring the presence of GM crops and crop products. Here, we used visible near-infrared (Vis-NIR) spectroscopy to distinguish between GM and non-GM Brassica napus, B. juncea, and F-1 hybrids (B. juncea X GM B. napus). The Vis-NIR spectra were preprocessed with different preprocessing methods, namely normalization, standard normal variate, and Savitzky-Golay. Both raw and preprocessed spectra were used in combination with eight different chemometric methods for the effective discrimination of GM and non-GM plants. The standard normal variate and support vector machine combination was determined to be the most accurate model in the discrimination of GM, non-GM, and hybrid plants among the many combinations (99.4%). The use of deep learning in combination with Savitzky-Golay resulted in 99.1% classification accuracy. According to the findings, it is concluded that handheld Vis-NIR spectroscopy combined with chemometric analyses could be used to distinguish between GM and non-GM B. napus, B. juncea, and F-1 hybrids.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE