Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping

Authors
Petchakup, ChayakornYang, HaoningGong, LingyanHe, LinweiTay, Hui MinDalan, RinkooChung, Aram J.Li, King Ho HoldenHou, Han Wei
Issue Date
5월-2022
Publisher
WILEY-V C H VERLAG GMBH
Keywords
biophysical phenotyping; impedance cytometry; neutrophil profiling
Citation
SMALL, v.18, no.18
Indexed
SCIE
SCOPUS
Journal Title
SMALL
Volume
18
Number
18
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/141086
DOI
10.1002/smll.202104822
ISSN
1613-6810
Abstract
The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min(-1) without any antibodies labeling to facilitate clinical diagnostics.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Bioengineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE