Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formateopen access

Authors
Ko, Young-JinKim, Jun-YongLee, Woong HeeKim, Min GyuSeong, Tae-YeonPark, JongkilJeong, YeonJooMin, Byoung KounLee, Wook-SeongLee, Dong KiOh, Hyung-Suk
Issue Date
22-4월-2022
Publisher
NATURE PORTFOLIO
Citation
NATURE COMMUNICATIONS, v.13, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
13
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/141782
DOI
10.1038/s41467-022-29783-7
ISSN
2041-1723
Abstract
Though stannic oxides can catalyze CO2 electroreduction to formate, the stability of these catalysts has been limited. Here, the authors demonstrate stable fluorine-doped SnO2 materials toward formate production at current densities of >300 mA/cm(2). The electrosynthesis of formate from CO2 can mitigate environmental issues while providing an economically valuable product. Although stannic oxide is a good catalytic material for formate production, a metallic phase is formed under high reduction overpotentials, reducing its activity. Here, using a fluorine-doped tin oxide catalyst, a high Faradaic efficiency for formate (95% at 100 mA cm(-2)) and a maximum partial current density of 330 mA cm(-2) (at 400 mA cm(-2)) is achieved for the electroreduction of CO2. Furthermore, the formate selectivity (approximate to 90%) is nearly constant over 7 days of operation at a current density of 100 mA cm(-2). In-situ/operando spectroscopies reveal that the fluorine dopant plays a critical role in maintaining the high oxidation state of Sn, leading to enhanced durability at high current densities. First-principle calculation also suggests that the fluorine-doped tin oxide surface could provide a thermodynamically stable environment to form HCOO* intermediate than tin oxide surface. These findings suggest a simple and efficient approach for designing active and durable electrocatalysts for the electrosynthesis of formate from CO2.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE