Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Design Optimization of Asymmetric Patterns for Variable Stiffness of Continuum Tubular Robots

Authors
Park, SoyeonKim, JongwooKim, ChunwooCho, Kyu-JinNoh, Gunwoo
Issue Date
8월-2022
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Electron tubes; Robots; Optimization; Shape; Topology; Service robots; Bending; Mechanism design; medical robots and systems; steerable catheters; needles; surgical robotics; variable stiffness mechanism
Citation
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, v.69, no.8, pp.8190 - 8200
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume
69
Number
8
Start Page
8190
End Page
8200
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/141802
DOI
10.1109/TIE.2021.3104604
ISSN
0278-0046
Abstract
Variable stiffness mechanisms have become popular for improving the performance of meso/microscale robots due to their ability to enable safe, effective, and versatile operation without additional actuators. In minimally invasive surgery (MIS), they can provide low stiffness for adaptability and an extended workspace and high stiffness for stable manipulation. This study aims to optimize the pattern design that maximizes the stiffness ratio while preventing buckling. Longitudinal slits are identified as the ideal shape for maximizing the ratio using topology optimization. The effects of the design parameters are investigated by analytical modeling and finite-element analysis (FEA). Finally, we established a design optimization process to maximize the variable stiffness ratio while ensuring safety. The load and buckling tests of 19 cases are verified in both the experiment and FEA. Buckling occurred in eight cases, consistent with the expected results from the proposed map. Among the tested cases, the tube with the optimal pattern parameter set exhibits the highest stiffness ratio of 2.67 while satisfying the given stiffness constraint (greater than 0.3 times the flexural stiffness of the initial tube) and avoiding buckling. The proposed optimization method potentially enables an extended workspace and more versatile functionality for MIS instruments.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE