Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Uncertainty-aware hierarchical segment-channel attention mechanism for reliable and interpretable multichannel signal classification

Authors
Lee, JiyoonKim, Seoung Bum
Issue Date
6월-2022
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Explainable neural network; Attention mechanism; Bayesian neural network; Multichannel signal; Multivariate time series
Citation
NEURAL NETWORKS, v.150, pp.68 - 86
Indexed
SCIE
SCOPUS
Journal Title
NEURAL NETWORKS
Volume
150
Start Page
68
End Page
86
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/141815
DOI
10.1016/j.neunet.2022.02.019
ISSN
0893-6080
Abstract
Multichannel signal data analysis has been crucial in various industrial applications, such as human activity recognition, vehicle failure predictions, and manufacturing equipment monitoring. Recently, deep neural networks have come into use for multichannel signal data because of their ability to automatically extract useful features from complex multichannel signals. However, deep neural networks are black-box models whose internal working mechanisms cannot be put in a form readily understood by humans. To address this issue, we have proposed an uncertainty-aware hierarchical segment-channel attention model that consists of a time segment and channel level attentions. The hierarchical attention mechanism enables a neural network to identify important time segments and channels critical for prediction, making the model explainable. In addition, the model uses variational inferences to provide uncertainty information that yields a confidence interval that can be easily explained. We conducted experiments on simulated and real-world datasets to demonstrate the usefulness and applicability of our method. The results confirm that our method can attend to important time segments and sensors while achieving better classification performance. (C)& nbsp;2022 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE