Time splitting ratio in the ?(8)-Bathe time integration method for higher-order accuracy in structural dynamics and heat transfer
- Authors
- Choi, Bokyu; Bathe, Klaus-Jurgen; Noh, Gunwoo
- Issue Date
- 1-10월-2022
- Publisher
- PERGAMON-ELSEVIER SCIENCE LTD
- Keywords
- Direct time integrations; Implicit schemes; Bathe method; Order of accuracy; Structural dynamics; Heat transfer
- Citation
- COMPUTERS & STRUCTURES, v.270
- Indexed
- SCIE
SCOPUS
- Journal Title
- COMPUTERS & STRUCTURES
- Volume
- 270
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/142714
- DOI
- 10.1016/j.compstruc.2022.106814
- ISSN
- 0045-7949
- Abstract
- Our objective in this paper is to investigate the use of the splitting ratio, y, in the p(infinity)-Bathe method to reach a higher-order accuracy in the finite element solutions of structural dynamics and heat transfer problems. We study the order of accuracy of the method for both types of analyses, and identify a p ( )real-valued y(p) resulting into third-order accuracy with p(infinity) = (-1, 1 -root 3] and a complex-valued y(i )with p(infinity) is an element of [0,11 providing at least third-order accuracy but y(i )with p(infinity )= 1 gives fourth-order accuracy. In both types of analyses, structural and heat transfer solutions, the y values result into the same orders of convergence. To illustrate our theoretical findings, we give the results of some example solutions of structural dynamics and heat flow problems. These solutions show that more accurate response predictions can be obtained when using the more effective y values. (C) 2022 Elsevier Ltd. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Mechanical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.