Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in Hydrogen

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Ki-Wan-
dc.contributor.authorHwang, Jin-Ha-
dc.contributor.authorKim, Yun-Jae-
dc.contributor.authorKim, Ki-Seok-
dc.contributor.authorLam, Poh-Sang-
dc.date.accessioned2022-08-10T18:43:57Z-
dc.date.available2022-08-10T18:43:57Z-
dc.date.created2022-08-10-
dc.date.issued2022-07-01-
dc.identifier.issn0020-7403-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/142765-
dc.description.abstractIn this paper, we propose a numerical methodology to predict the effect of hydrogen concentration on fracture toughness by using small punch (SP) test data in hydrogen. The proposed method performs finite element (FE) damage analysis, with the multi-axial fracture strain damage model based on. First, a damage model is derived from the tensile and fracture toughness test data obtained in air. Then, by simulating the SP test in hydrogen, the hydrogen-embrittlement constant is determined. Finally, fracture toughness of hydrogen-embrittled material is predicted using the determined damage model and hydrogen-embrittlement constant. To validate the proposed methodology, published test data of API X70 steel in hydrogen and air (or nitrogen) atmosphere are used. In terms of hydrogen concentration, the predicted fracture toughness agrees well with the fracture toughness test data obtained in hydrogen environment.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectAUSTENITIC STAINLESS-STEEL-
dc.subjectX70 PIPELINE STEEL-
dc.subjectHEAT-AFFECTED ZONE-
dc.subjectGRAIN-SIZE-
dc.subjectSTRESS-CORROSION-
dc.subjectSTRAIN-RATE-
dc.subjectPRE-STRAIN-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectVOID GROWTH-
dc.subjectSUSCEPTIBILITY-
dc.titleFracture toughness prediction of hydrogen-embrittled materials using small punch test data in Hydrogen-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Yun-Jae-
dc.identifier.doi10.1016/j.ijmecsci.2022.107371-
dc.identifier.scopusid2-s2.0-85131369541-
dc.identifier.wosid000818430500002-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, v.225-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES-
dc.citation.titleINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES-
dc.citation.volume225-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusAUSTENITIC STAINLESS-STEEL-
dc.subject.keywordPlusX70 PIPELINE STEEL-
dc.subject.keywordPlusHEAT-AFFECTED ZONE-
dc.subject.keywordPlusGRAIN-SIZE-
dc.subject.keywordPlusSTRESS-CORROSION-
dc.subject.keywordPlusSTRAIN-RATE-
dc.subject.keywordPlusPRE-STRAIN-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusVOID GROWTH-
dc.subject.keywordPlusSUSCEPTIBILITY-
dc.subject.keywordAuthorFinite element damage analysis-
dc.subject.keywordAuthorFracture toughness prediction-
dc.subject.keywordAuthorHydrogen-embrittlement constant-
dc.subject.keywordAuthorMulti-axial fracture strain model-
dc.subject.keywordAuthorSmall punch test-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Jae photo

Kim, Yun Jae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE