Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improved strontium segregation suppression of lanthanum strontium cobalt oxide cathode via chemical etching and atomic layer deposition

Authors
Kim, Dong HwanYang, SungeunKwon, Deok-HwangJi, Ho-IlSon, Ji-WonShim, Joon Hyung
Issue Date
7월-2022
Publisher
WILEY
Keywords
atomic layer deposition; cathode; chemical etching; solid oxide fuel cells
Citation
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.46, no.9, pp.12467 - 12475
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume
46
Number
9
Start Page
12467
End Page
12475
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/142911
DOI
10.1002/er.8012
ISSN
0363-907X
Abstract
This study was conducted to improve the stability of a high-performance cathode, which plays a crucial role in lowering the operating temperature of solid oxide fuel cells (SOFCs) to below 600 degrees C while retaining its performance. Lanthanum strontium cobalt oxide (LSC) is a representative SOFC cathode material used in the intermediate temperature (IT) region (500 degrees C-600 degrees C). When segregation occurs on the cathode surface during high-temperature fabrication, the initial performance degrades to a certain extent, followed by continuous performance degradation. Herein, we aimed to overcome this degradation through surface modification. Accordingly, an ideal LSC surface composition was achieved by removing the segregated Sr through wet chemical etching of the cathode surface. Further, an atomic layer deposition (ALD) process of less than 1 nm thickness was introduced to prevent further Sr separation and minimize performance degradation. The peak power density of the cell with the modified surface (M-LSC) at 550 degrees C was 509 mW cm(-2), whereas that of the cell with bare LSC was 483 mW cm(-2). Based on the 70-h short-term stability test, the bare LSC showed a degradation of 70 mV, while the M-LSC remained stable with no degradation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shim, Joon Hyung photo

Shim, Joon Hyung
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE