Integration of multiple electronic components on a microfibre towards an emerging electronic textile platformopen access
- Authors
- Hwang, Sunbin; Kang, Minji; Lee, Aram; Bae, Sukang; Lee, Seoung-Ki; Lee, Sang Hyun; Lee, Takhee; Wang, Gunuk; Kim, Tae-Wook
- Issue Date
- 8-6월-2022
- Publisher
- NATURE PORTFOLIO
- Citation
- NATURE COMMUNICATIONS, v.13, no.1
- Indexed
- SCIE
SCOPUS
- Journal Title
- NATURE COMMUNICATIONS
- Volume
- 13
- Number
- 1
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/142966
- DOI
- 10.1038/s41467-022-30894-4
- ISSN
- 2041-1723
- Abstract
- Electronic fibres have been considered one of the desired device platforms due to their dimensional compatibility with fabrics by weaving with yarns. However, a precise connecting process between each electronic fibre is essential to configure the desired electronic circuits or systems. Here, we present an integrated electronic fibre platform by fabricating electronic devices onto a one-dimensional microfibre substrate. Electronic components such as transistors, inverters, ring oscillators, and thermocouples are integrated together onto the outer surface of a fibre substrate with precise semiconductor and electrode patterns. Our results show that electronic components can be integrated on a single fibre with reliable operation. We evaluate the electronic properties of the chip on the fibre as a multifunctional electronic textile platform by testing their switching and data processing, as well as sensing or transducing units for detecting optical/thermal signals. The demonstration of the electronic fibre suggests significant proof of concepts for the realization of high performance with wearable electronic textile systems. Towards further integration and miniaturization of e-textiles, in this work, authors demonstrate an integrated electronic fibre platform by fabricating multiple electronic components such as transistors, inverters, ring oscillators, and thermocouples onto the outer surface of a microfibre substrate.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - ETC > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.