Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Alachlor breaks down intracellular calcium homeostasis and leads to cell cycle arrest through JNK/MAPK and PI3K/AKT signaling mechanisms in bovine mammary gland epithelial cells

Authors
Kim, M.An, G.Lim, W.Song, G.
Issue Date
6월-2022
Publisher
Academic Press Inc.
Keywords
Alachlor; Calcium homeostasis; Cell cycle; Mammary gland epithelial cell; Proliferation
Citation
Pesticide Biochemistry and Physiology, v.184
Indexed
SCIE
SCOPUS
Journal Title
Pesticide Biochemistry and Physiology
Volume
184
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/143189
DOI
10.1016/j.pestbp.2022.105063
ISSN
0048-3575
Abstract
Alachlor is a widely used herbicide for the cultivation of various grains employed as food for cattle. The mechanisms leading to the toxic effects of alachlor on epithelial cells of the bovine mammary gland are not well known. Thus, this study was conducted to clarify the toxicological effects of alachlor on the immortalized epithelial cell line of the bovine mammary gland (MAC-T) cells. After treatment, many factors related to cell viability, proliferation, and cellular homeostasis were evaluated. Alachlor arrested cell cycle progression by blocking the expression of cyclin and cyclin-dependent kinases, and induced the breakdown of Ca2+ homeostasis. The cytosolic and mitochondrial levels of Ca2+ were also abnormally increased after the treatment of cells with alachlor, ultimately leading to the depolarization of mitochondrial membrane potential in MAC-T cells. The signaling cascade was found to be dysregulated by the abnormal phosphorylation of signaling molecules involved in PI3K/AKT (AKT, p70S6K, and S6) and MAPK/JNK (JNK and c-Jun) pathways. In these mechanisms, exposure to alachlor led to a reduction in the viability and proliferation of MAC-T cells. Altogether, the toxic effects of alachlor can lead to abnormal conditions in epithelial cells of the bovine mammary gland, which might hinder these cells from performing their main role, such as producing milk. © 2022 Elsevier Inc.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Gwon hwa photo

Song, Gwon hwa
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE