Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Macroporous vanadium dioxide-reduced graphene oxide microspheres: Cathode material with enhanced electrochemical kinetics for aqueous zinc-ion batteries

Authors
Choi, Jae HunPark, Jin-SungKang, Yun Chan
Issue Date
15-10월-2022
Publisher
ELSEVIER
Keywords
Spray pyrolysis; Vanadium oxide; Reduced graphene oxide; Zinc-ion batteries; Cathode materials
Citation
APPLIED SURFACE SCIENCE, v.599
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SURFACE SCIENCE
Volume
599
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/143306
DOI
10.1016/j.apsusc.2022.153890
ISSN
0169-4332
Abstract
Aqueous zinc-ion batteries are being extensively investigated owing to their safe operating conditions. Therefore, the search for cathode materials with optimum composition and nanostructure that enable high zinc-ion storage performance is underway. This study introduces a procedure for the formation of vanadium dioxide-nanoflake-reduced graphene oxide composite (P-VO2@rGO) microspheres with open pores through spray pyrolysis. Spherical cathode materials are formed by spray pyrolysis through the addition of polystyrene nanobeads and graphene oxide nanosheets in the spray solution. This enabled the formation of porous and crumpled graphene oxide microspheres, wherein thin VO2 nanoflakes are anchored. As a cathode for zinc-ion batteries, P-VO2@rGO exhibits a high rate capability (159 mA h g(-1); current density = 5.0 A g(-1)) and stable cycle performance for the 300 cycles at 1.0 A g(-1). To discern the synergistic effect of the reduced graphene oxide (rGO) and 3D-porous structure with a small crystal size on the zinc-ion storage, control samples (VO2-rGO composite and porous VO2 microspheres) are synthesized and tested as cathodes for zinc-ion batteries. The synergistic effect of compositing rGO and introducing porous structure with small crystal size enables high reversible capacity and enhances electrochemical kinetics of the electrode.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE