Future Projection of CO2 Absorption and N2O Emissions of the South Korean Forests under Climate Change Scenarios: Toward Net-Zero CO2 Emissions by 2050 and Beyondopen access
- Authors
- Kim, Hyung-Sub; Noulekoun, Florent; Noh, Nam-Jin; Son, Yo-Whan
- Issue Date
- 7월-2022
- Publisher
- MDPI
- Keywords
- climate change; modeling; carbon dioxide; nitrous oxide; greenhouse gas; net-zero emissions
- Citation
- FORESTS, v.13, no.7
- Indexed
- SCIE
SCOPUS
- Journal Title
- FORESTS
- Volume
- 13
- Number
- 7
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/143370
- DOI
- 10.3390/f13071076
- ISSN
- 1999-4907
- Abstract
- Forests mitigate climate change by absorbing CO2. However, N2O emissions in forests, which has 298 times larger global warming potential than CO2, can diminish the climate mitigation role of forests. Thus, it is crucial to project not only CO2 absorption but also N2O emissions in forests to provide a scientific basis for the 1.5 degrees C Paris Agreement goal. This study used a biogeochemical model, called FBD-CAN, to project CO2 absorption and N2O emissions of South Korean forests from 2021 to 2080 under three climate scenarios, including the current climate, Representative Concentration Pathway (RCP) 4.5, and RCP 8.5. From 2021 to 2080, CO2 absorption decreased from 5.0 to 1.4 Mg CO2 ha(-1) year(-1) under the current climate with the aging of forests, while N2O emissions increased from 0.25 to 0.33 Mg CO2 eq. ha(-1) year(-1). Climate change accelerated the decreasing trend in CO2 absorption and the increasing trend in N2O emissions. The subalpine region had a faster decreasing trend in CO2 absorption than the central and southern regions due to its older stand age. These findings provide scientific references for future greenhouse gas reduction plans and broaden our knowledge of the impacts of climate change on the climate mitigation role of forests.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.