Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stabilization, Characterization, and Electrochemical Applications of High-Entropy Oxides: Critical Assessment of Crystal Phase-Properties Relationship

Authors
Tomboc, Gracita M.Zhang, XiandiChoi, SongaKim, DaekyuLee, Lawrence Yoon SukLee, Kwangyeol
Issue Date
10월-2022
Publisher
WILEY-V C H VERLAG GMBH
Keywords
combinatorial screening approach; energy conversion; energy storage; high-entropy oxides; phase stability; structural characterization
Citation
ADVANCED FUNCTIONAL MATERIALS, v.32, no.43
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
32
Number
43
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/143590
DOI
10.1002/adfm.202205142
ISSN
1616-301X
Abstract
High-entropy oxides (HEOs), a class of newly emerging energy conversion and storage technology materials, have gained significant interest due to their unique structure, complex stoichiometry, and corresponding synergetic effect. Despite the increasing number of reported studies related to HEOs in recent years, details of their structural properties and electrochemical activities are still lacking. Herein, the exciting developments of HEOs regarding their design, synthesis, characterization, theoretical calculations, and electrochemical performances are outlined. The fundamentals of HEOs, including their strict definition, main features, and four-core aspect effects are presented. The different synthetic methods of HEOs are categorized to highlight the significance of parameter optimization to ensure the single-phase stability of HEOs. The advances in characterization techniques on the local lattice and atomic distribution and the basic principles of combinatorial screening methods based on computational techniques are also elaborated. Recent HEO-based electrode/electrocatalysts toward Li-ion batteries and oxygen catalysis are reviewed to assess the potential applications of HEOs. This review draws attention to the critical challenges of HEOs that are worth more extensive explorations in the future.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwang yeol photo

Lee, Kwang yeol
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE