Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancing Mixing Performance in a Rotating Disk Mixing Chamber: A Quantitative Investigation of the Effect of Euler and Coriolis Forcesopen access

Authors
Lee, JihyeongLee, SaebomLee, MinkiPrakash, RiteshKim, HyejeongCho, GyoujinLee, Jinkee
Issue Date
8월-2022
Publisher
MDPI
Keywords
Coriolis force; Euler force; microfluidics; mixing; rotating disk
Citation
MICROMACHINES, v.13, no.8
Indexed
SCIE
SCOPUS
Journal Title
MICROMACHINES
Volume
13
Number
8
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/143812
DOI
10.3390/mi13081218
ISSN
2072-666X
Abstract
Lab-on-a-CD (LOCD) is gaining importance as a diagnostic platform due to being low-cost, easy-to-use, and portable. During LOCD usage, mixing and reaction are two processes that play an essential role in biochemical applications such as point-of-care diagnosis. In this paper, we numerically and experimentally investigate the effects of the Coriolis and Euler forces in the mixing chamber during the acceleration and deceleration of a rotating disk. The mixing performance is investigated under various conditions that have not been reported, such as rotational condition, chamber aspect ratio at a constant volume, and obstacle arrangement in the chamber. During disk acceleration and deceleration, the Euler force difference in the radial direction causes rotating flows, while the Coriolis force induces perpendicular vortices. Increasing the maximum rotational velocity improves the maximum rotational displacement, resulting in better mixing performance. A longer rotational period increases the interfacial area between solutions and enhances mixing. Mixing performance also improves when there is a substantial difference between Euler forces at the inner and outer radii. Furthermore, adding obstacles in the angular direction also passively promotes or inhibits mixing by configuration. This quantitative investigation provides valuable information for designing and developing high throughput and multiplexed point-of-care LOCDs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE