Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Draw-a-Deep Pattern: Drawing Pattern-Based Smartphone User Authentication Based on Temporal Convolutional Neural Networkopen access

Authors
Kim, JunhongKang, Pilsung
Issue Date
8월-2022
Publisher
MDPI
Keywords
behavioral biometrics; mobile user authentication; recurrent neural network; sequence modeling; temporal convolution neural network
Citation
APPLIED SCIENCES-BASEL, v.12, no.15
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SCIENCES-BASEL
Volume
12
Number
15
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/143825
DOI
10.3390/app12157590
ISSN
2076-3417
Abstract
Present-day smartphones provide various conveniences, owing to high-end hardware specifications and advanced network technology. Consequently, people rely heavily on smartphones for a myriad of daily-life tasks, such as work scheduling, financial transactions, and social networking, which require a strong and robust user authentication mechanism to protect personal data and privacy. In this study, we propose draw-a-deep-pattern (DDP)-a deep learning-based end-to-end smartphone user authentication method using sequential data obtained from drawing a character or freestyle pattern on the smartphone touchscreen. In our model, a recurrent neural network (RNN) and a temporal convolution neural network (TCN), both of which are specialized in sequential data processing, are employed. The main advantages of the proposed DDP are (1) it is robust to the threats to which current authentication systems are vulnerable, e.g., shoulder surfing attack and smudge attack, and (2) it requires few parameters for training; therefore, the model can be consistently updated in real-time, whenever new training data are available. To verify the performance of the DDP model, we collected data from 40 participants in one of the most unfavorable environments possible, wherein all potential intruders know how the authorized users draw the characters or symbols (shape, direction, stroke, etc.) of the drawing pattern used for authentication. Of the two proposed DDP models, the TCN-based model yielded excellent authentication performance with average values of 0.99%, 1.41%, and 1.23% in terms of AUROC, FAR, and FRR, respectively. Furthermore, this model exhibited improved authentication performance and higher computational efficiency than the RNN-based model in most cases. To contribute to the research/industrial communities, we made our dataset publicly available, thereby allowing anyone studying or developing a behavioral biometric-based user authentication system to use our data without any restrictions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Pil sung photo

Kang, Pil sung
공과대학 (산업경영공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE