Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrafast supercapacitors based on boron-doped Ketjen black and aqueous electrolytes

Authors
Jin, QingPark, JinwooJi, NayoungKhandelwal, MahimaKim, Woong
Issue Date
30-Oct-2022
Publisher
ELSEVIER
Keywords
Boron doping; Supercapacitor; Frequency response; AC line filtering; Wettability
Citation
APPLIED SURFACE SCIENCE, v.600
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SURFACE SCIENCE
Volume
600
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/145656
DOI
10.1016/j.apsusc.2022.154181
ISSN
0169-4332
Abstract
Compact supercapacitors (SCs) are considered as a promising alternative to bulky aluminum electrolytic capacitors (AECs) for alternating current (AC) line filtering applications. Although the recently-developed SCs based on heteroatom-doped and/or macro/mesoporous carbon materials exhibit sufficiently fast response speeds for such applications, improvements in their performance characteristics (e.g., capacitance) would be highly desirable. In particular, the SCs with heteroatom-doped carbons have thus far exhibited limited capacitances at high frequencies (< 0.5 mF cm(-2) at 120 Hz). In the present work, SCs with boron (B)-doped mesoporous Ketjen black (KB) and a 6 M KOH electrolyte are shown to exhibit a high areal capacitance of 1.67 mF cm(-2), along with a high frequency response (negative phase angle, -Phi = 81.5 degrees) at 120 Hz. The excellent performance of the B-doped KB SCs can be attributed to the improved wettability and electrical conductivity, and to the increased number of capacitive sites due to the B-doping. This demonstration may greatly contribute to the development of high performance SCs suitable for high frequency applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Woong photo

Kim, Woong
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE