Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Perpendicularly stacked array of PTFE nanofibers as a reinforcement for highly durable composite membrane in proton exchange membrane fuel cellsopen access

Authors
Hwang, Chang-KyuLee, Kyung AhLee, JiyoungKim, YoungohAhn, HyunchulHwang, WontaeJu, Byeong-KwonKim, Jin YoungYeo, Sang YoungChoi, JoonmyungSung, Yung-EunKim, Il-DooYoon, Ki Ro
Issue Date
Oct-2022
Publisher
ELSEVIER
Keywords
Cross-alignedPTFEnanofibers; Electric-fieldguidedelectrospinning; Polymerelectrolytemembranefuelcells; Highlydurablecompositemembrane; Lowhydrogencrossover
Citation
NANO ENERGY, v.101
Indexed
SCIE
SCOPUS
Journal Title
NANO ENERGY
Volume
101
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/145684
DOI
10.1016/j.nanoen.2022.107581
ISSN
2211-2855
Abstract
The configuration of reinforced composite membrane (RCM), composed of porous polytetrafluoroethylene (PTFE) as a mechanical reinforcement and perfluorosulfonic acid (PFSA) as a proton conductive polymer, has gained a large interest due to its promisingly high performance for polymer electrolyte membrane (PEM) fuel cells. However, the inaccessible polymeric nanocomposites in preparing RCMs are still faced with critical challenges associated with immiscible interactions between hydrophilic sulfonate groups in PFSA and the hy-drophobic nanoporous PTFE matrix. Herein, we report a well-refined and facile fabrication strategy for pro-ducing a cross-aligned PTFE (CA-PTFE) framework. The electric-field guided electrospinning enables the creation of unique micron-scale, grid-type PTFE matrix, which is synthesized by annealing of electrospun conjugated polymers, resulting in the removal of carrier polymer and the formation of continuous fibrious structure via fusion of PTFE particles. The CA-PTFE RCM embodying uniformly impregnated PFSA in a grid-type PTFE matrix, facilitates hydration of the membranes, with minimal swelling and efficient diffusion of protons through concentrated sulfonate groups. The CA-PTFE RCM adopted cell showed outstanding fuel cell currents during both low and high humidity operation, with a current density of 1.38 A cm-2 at 0.6 V and maximum power density of 0.85 W cm-2 under RH 100% condition. Furthermore, the CA-PTFE RCM was able to achieve a long-lasting single-cell operation with a significantly low hydrogen crossover (less than 5 mA cm-2 at 0.4 V) even after 21,000 wet/dry cycles, which surpasses the standard of membrane durability for transportation application. The rational design of fibrous PTFE reinforcements opens up new engineering opportunities for the future devel-opment of high-stability PEM fuel cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ju, Byeong kwon photo

Ju, Byeong kwon
College of Engineering (School of Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE