Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Safe semi-supervised learning using a bayesian neural network

Authors
Bae, JinsooLee, MinjungKim, Seoung Bum
Issue Date
10월-2022
Publisher
ELSEVIER SCIENCE INC
Keywords
Safe semi-supervised deep learning; Out-of-distribution; Bayesian neural network; Uncertainty; Uncertain noise; Consistency regularization
Citation
INFORMATION SCIENCES, v.612, pp.453 - 464
Indexed
SCIE
SCOPUS
Journal Title
INFORMATION SCIENCES
Volume
612
Start Page
453
End Page
464
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/145702
DOI
10.1016/j.ins.2022.08.094
ISSN
0020-0255
Abstract
Semi-supervised learning attempts to use a large set of unlabeled data to increase the pre-diction accuracy of machine learning models when the amount of labeled data is limited. However, in realistic cases, unlabeled data may worsen performance because they contain out-of-distribution (OOD) data that differ from the labeled data. To address this issue, safe semi-supervised deep learning has recently been presented. This study suggests a new safe semi-supervised algorithm that uses an uncertainty-aware Bayesian neural network. Our proposed method, safe uncertainty-based consistency training (SafeUC), uses Bayesian uncertainty to minimize the harmful effects caused by unlabeled OOD examples. The pro-posed method improves the model's generalization performance by regularizing the net-work for consistency against uncertain noise. Moreover, to avoid uncertain prediction results, the proposed method includes a practical inference tip based on a well -calibrated uncertainty. The effectiveness of the proposed method is demonstrated in the experimental results on CIFAR-10 and SVHN by showing that it achieved state-of-the-art performance for all semi-supervised learning tasks with OOD data presence rates.(c) 2022 Elsevier Inc. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Seoung Bum photo

KIM, Seoung Bum
공과대학 (산업경영공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE