Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheetsopen access

Authors
Lee, ChangjaePark, Soon MoKim, SoobinChoi, Yun-SeokPark, GeonhyeongKang, Yun ChanKoo, Chong MinKim, Seon JoonYoon, Dong Ki
Issue Date
24-9월-2022
Publisher
NATURE PORTFOLIO
Citation
NATURE COMMUNICATIONS, v.13, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
13
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/145733
DOI
10.1038/s41467-022-33337-2
ISSN
2041-1723
Abstract
In this work, authors demonstrate reversible vertical alignment of Ti3C2Tx MXene sheets induced by an applied in-plane electric field. Further modulation of the field can achieve programmed patterns onto various electrode substrates. Controlling the orientation of two-dimensional materials is essential to optimize or tune their functional properties. In particular, aligning MXene, a two-dimensional carbide and/or nitride material, has recently received much attention due to its high conductivity and high-density surface functional group properties that can easily vary based on its arranged directions. However, erecting 2D materials vertically can be challenging, given their thinness of few nanometres. Here, vertical alignment of Ti3C2Tx MXene sheets is achieved by applying an in-plane electric field, which is directly observed using polarised optical microscopy and scanning electron microscopy. The electric field-induced vertical alignment parallel to the applied alternating-current field is demonstrated to be reversible in the absence of a field, back to a random orientation distribution. Interdigitated electrodes with uniaxially aligned MXene nanosheets are demonstrated. These can be further modulated to achieve various patterns using diversified electrode substrates. Anisotropic electrical conductivity is also observed in the uniaxially aligned MXene nanosheet film, which is quite different from the randomly oriented ones. The proposed orientation-controlling technique demonstrates potential for many applications including sensors, membranes, polarisers, and general energy applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE