Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Conversion of Automated 12-Lead Electrocardiogram Interpretations to OMOP CDM Vocabularyopen access

Authors
Choi, SunhoJoo, Hyung JoonKim, YoojoongKim, Jong-HoSeok, Junhee
Issue Date
Aug-2022
Publisher
GEORG THIEME VERLAG KG
Keywords
OMOP common data model; ontology; electrocardiogram; clinical coding; ECG interpretation; ontology-lexicon
Citation
APPLIED CLINICAL INFORMATICS, v.13, no.04, pp.880 - 890
Indexed
SCIE
SCOPUS
Journal Title
APPLIED CLINICAL INFORMATICS
Volume
13
Number
04
Start Page
880
End Page
890
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/145870
DOI
10.1055/s-0042-1756427
ISSN
1869-0327
Abstract
Background A computerized 12-lead electrocardiogram (ECG) can automatically generate diagnostic statements, which are helpful for clinical purposes. Standardization is required for big data analysis when using ECG data generated by different interpretation algorithms. The common data model (CDM) is a standard schema designed to overcome heterogeneity between medical data. Diagnostic statements usually contain multiple CDM concepts and also include non-essential noise information, which should be removed during CDM conversion. Existing CDM conversion tools have several limitations, such as the requirement for manual validation, inability to extract multiple CDM concepts, and inadequate noise removal. Objectives We aim to develop a fully automated text data conversion algorithm that overcomes limitations of existing tools and manual conversion. Methods We used interpretations printed by 12-lead resting ECG tests from three different vendors: GE Medical Systems, Philips Medical Systems, and Nihon Kohden. For automatic mapping, we first constructed an ontology-lexicon of ECG interpretations. After clinical coding, an optimized tool for converting ECG interpretation to CDM terminology is developed using term-based text processing. Results Using the ontology-lexicon, the cosine similarity-based algorithm and rule-based hierarchical algorithm showed comparable conversion accuracy (97.8 and 99.6%, respectively), while an integrated algorithm based on a heuristic approach, ECG2CDM, demonstrated superior performance (99.9%) for datasets from three major vendors. Conclusion We developed a user-friendly software that runs the ECG2CDM algorithm that is easy to use even if the user is not familiar with CDM or medical terminology. We propose that automated algorithms can be helpful for further big data analysis with an integrated and standardized ECG dataset.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SEOK, Jun hee photo

SEOK, Jun hee
공과대학 (School of Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE