Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Room temperature annealing of SnS2 films with electron impulse force

Authors
Al-Mamun, Nahid SultanWolfe, Douglas E.Haque, AmanYim, Jae-GyunKim, Seong Keun
Issue Date
2월-2023
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Atomic layer deposition; Annealing; Electromigration; Transmission electron microscopy
Citation
SCRIPTA MATERIALIA, v.224
Indexed
SCOPUS
Journal Title
SCRIPTA MATERIALIA
Volume
224
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/146450
DOI
10.1016/j.scriptamat.2022.115107
ISSN
1359-6462
Abstract
Tin disulfide (SnS2) is a layered metal dichalcogenide material with wide bandgap favoring electronics, sensors, photovoltaics, and water splitting applications. Atomic layer deposition can precisely control film thickness over large area, which is important for device applications. The as-deposited SnS2 shows poor crystallinity, which is difficult to anneal with high temperature because of de-sulfurization. We demonstrate room temperature annealing by exploiting electron impulse force. High current density pulses were applied with very low duty cycle to suppress heat accumulation, while the momentum of the electron pulses interacted with the defects and grain boundaries. For seven-layer thick tin di-sulfide specimens, resistivity was decreased by ten times at ambient temperature. Enhancement of crystallinity was analyzed with Raman spectroscopy and transmission electron microscopy followed by geometric phase analysis. The demonstrated technique can impact applications where post-synthesis annealing requires high temperature and special environment.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE