Ethalfluralin induces developmental toxicity in zebrafish via oxidative stress and inflammation
- Authors
- Hong, Taeyeon; Park, Hahyun; An, Garam; Song, Gwonhwa; Lim, Whasun
- Issue Date
- 1-1월-2023
- Publisher
- ELSEVIER
- Keywords
- Ethalfluralin; Zebrafish; Embryo; Oxidative stress; Apoptosis
- Citation
- SCIENCE OF THE TOTAL ENVIRONMENT, v.854
- Indexed
- SCOPUS
- Journal Title
- SCIENCE OF THE TOTAL ENVIRONMENT
- Volume
- 854
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/146461
- DOI
- 10.1016/j.scitotenv.2022.158780
- ISSN
- 0048-9697
- Abstract
- Ethalfluralin, of dinitroaniline herbicide family, is an effective weed controller. Following residue detection in herbicide-treated fields, ethalfluralin was reported to interfere with early stages of implantation in some vertebrate species. However, the role of ethalfluralin in the development of zebrafish embryos has not been elucidated yet. Therefore, in the present study, we investigated the morphological and physiological changes that occur in the embryonic development of zebrafish due to ethalfluralin exposure. Results indicated that ethalfluralin decreased survival rate along with reduction in the hatching ratio and heartbeat. It was observed to cause edema in the heart and yolk sac, and apoptosis in the anterior region of the developing zebrafish larvae; as visualized through acridine orange and TUNEL staining. In addition, ethalfluralin increased the expression of the apoptosis-associated genes including tp53, cyc1, casp8, casp9, and casp3. The Seahorse Mito Stress analysis revealed that ethalfluralin slightly reduced mitochondrial respiration in live zebrafish embryos. Reactive oxygen species (ROS) production was also observed to be elevated in zebrafish larvae in response to ethalfluralin. Treatment with ethalfluralin decreased blood vessel formation in brain and intestine in flk1 transgenic zebrafish embryos. The decrease in angiogenesis related gene expression was specifically observed in vegfc, flt1, and kdrl, and in the intestinal vasculature related genes apoa4a, aqp3, fabp2, and vil1. Moreover, an increase in infiammatory genes such as cox2a, cox2b, cxcl-c1c, il8, mcl1a, mcl1b, and nf-kappa b was observed using real-time PCR analysis. Collectively, these results indicate that oxidative stress generated by exposure to ethalfiuralin induced ROS generation, apoptosis, infiammation and anti-angiogenic effects, and therefore, ethalfiuralin may be toxic to the development of zebrafish embryos.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Biotechnology > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.