Pore topology, volume expansion and pressure development in chemically-induced foam cementsopen access
- Authors
- Han, WooJin; Park, Junghee; Cha, Wonjun; Lee, Jong-Sub; Santamarina, J. Carlos
- Issue Date
- 6-10월-2022
- Publisher
- NATURE PORTFOLIO
- Citation
- SCIENTIFIC REPORTS, v.12, no.1
- Indexed
- SCIE
SCOPUS
- Journal Title
- SCIENTIFIC REPORTS
- Volume
- 12
- Number
- 1
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/146562
- DOI
- 10.1038/s41598-022-21128-0
- ISSN
- 2045-2322
- Abstract
- Foam cement is an engineered lightweight material relevant to a broad range of engineering applications. This study explores the effects of aluminum chips on cement-bentonite slurry expansion, pressure development, and the evolution of pore topology. The terminal volume expansion under free-boundary conditions or the pressure build up under volume-controlled conditions are a function of the aluminum mass ratio, bentonite mass ratio, and aluminum chip size. X-ray CT images show that finer aluminum chips create smaller pores but result in a larger volume expansion than when larger sized chips are used; on the other hand, large chip sizes result in unreacted residual aluminum. Time-lapse CT images clearly show the sequence of processes which lead to the development of foam cement: gas bubble nucleation, bubble growth, capillary-driven grain displacement enhanced by the presence of bentonite, coalescence, percolation, gas leakage and pore collapse. These results illustrate the potential to customize the mixture composition of chemically-induced gassy cement to control expansion and pressure build up, and to minimize percolating discontinuities and gas release.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.