Contact Enhancement in Nanoparticle Assemblies through Electrophoretic Depositionopen access
- Authors
- Park, Yoonsu; Jeong, Wooseok; Ahn, Junhyuk; Hong, Yun-Kun; Hwang, Eunseo; Kim, Minyoung; Hwang, Yun Jae; Oh, Soong Ju; Ha, Don-Hyung
- Issue Date
- 2022
- Publisher
- AMER CHEMICAL SOC
- Citation
- ACS OMEGA
- Indexed
- SCIE
SCOPUS
- Journal Title
- ACS OMEGA
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/147121
- DOI
- 10.1021/acsomega.2c04366
- ISSN
- 2470-1343
- Abstract
- A strong interparticle connection needs to be realized to harvest unique nanoscale features of colloidal nano-particles (NPs) in film structures. Constructing a strong contact and adhesion of NPs on a substrate is an essential process for improved NP film properties, and therefore, its key factors should be determined by understanding the NP deposition mechanism. Herein, we investigated the critical factors leading to the robust and strong adherence of the film structure and revealed that the NP deposition mechanism involved the role of surfactant ligands during electrophoretic deposition (EPD). The high amount of surfactant ligand treatment results in a high deposition rate of NPs in the early stage; however, the ligand treatment does not influence the deposition rate in the later stage. Furthermore, the deposition mechanism is found to involve three steps during EPD: island formation, lateral growth, and layer-by-layer deposition. Rapid NP deposition kinetics controlled by ligand treatments demonstrate the strong contact and adhesion of NP film structures; they are characterized by the fast charge transfer, low resistivity, and rigid NP layers of the Cu2-xS NP-based devices. Finally, the controlled role of surfactant ligands in EPD enables design of high-performance nanostructured NP film devices with contact enhancement.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.