Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Surface-modified ultra-thin indium zinc oxide films with tunable work function for efficient hole transport in flexible indoor organic photovoltaics

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jae Wan-
dc.contributor.authorTakaloo, Ashkan Vakilipour-
dc.contributor.authorKim, Sang Hyeon-
dc.contributor.authorSon, Kyung Rock-
dc.contributor.authorKang, Dae Yun-
dc.contributor.authorKang, Song Kyu-
dc.contributor.authorLee, Cheong Beom-
dc.contributor.authorChoi, Hyosung-
dc.contributor.authorShim, Jae Won-
dc.contributor.authorKim, Tae Geun-
dc.date.accessioned2021-08-30T02:48:34Z-
dc.date.available2021-08-30T02:48:34Z-
dc.date.created2021-06-19-
dc.date.issued2021-03-31-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/49461-
dc.description.abstractThe stability of the electrical and optical properties of electrodes subjected to physical strain need to be ensured to enhance the performance of indoor organic photovoltaics (OPVs). In this study, we demonstrate the stable performances of flexible OPVs by producing an ultra-thin (20 nm) indium zinc oxide (IZO) electrode by co-depositing its surface with Ni metal, which improves the electrical conductivity and energy-level alignment owing to a hole-transport layer. As an anode, the resulting ultra-thin IZO electrode exhibits a relative sheet resistance of 250 Omega sq(-1), high transmittance of 91.5% at 450 nm, and high work function of 5.05 eV. More importantly, the proposed electrode shows an enhanced bending performance, which is attributable to its amorphous structure formed as a result of co-deposition. Therefore, flexible OPVs with the proposed electrode show much higher performances (42% power conversion efficiency under indoor illumination) than those with a reference IZO anode. Furthermore, they exhibit outstanding flexural endurance properties while maintaining 84% of their original power conversion efficiency after 1500 cycles of bending at a bending radius of 8.1-4.2 mm on polyimide substrates. This study demonstrates an effective strategy for improving the performance of optoelectronic devices requiring electrical and mechanical stability.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.titleSurface-modified ultra-thin indium zinc oxide films with tunable work function for efficient hole transport in flexible indoor organic photovoltaics-
dc.typeArticle-
dc.contributor.affiliatedAuthorShim, Jae Won-
dc.contributor.affiliatedAuthorKim, Tae Geun-
dc.identifier.doi10.1016/j.jpowsour.2021.229507-
dc.identifier.scopusid2-s2.0-85099819333-
dc.identifier.wosid000619129400003-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.489-
dc.relation.isPartOfJOURNAL OF POWER SOURCES-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume489-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordAuthorCo-Sputtering process-
dc.subject.keywordAuthorUltra-thin indium zinc oxide-
dc.subject.keywordAuthorIndoor organic photovoltaics-
dc.subject.keywordAuthorConductivity-
dc.subject.keywordAuthorTransmittance-
dc.subject.keywordAuthorFlexibility-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae geun photo

Kim, Tae geun
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE