Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Cosine similarity based anomaly detection methodology for the CAN bus

Authors
Kwak, Byung IlHan, Mee LanKim, Huy Kang
Issue Date
15-3월-2021
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
In-vehicle network; Anomaly detection; Cosine similarity; Self-similarity
Citation
EXPERT SYSTEMS WITH APPLICATIONS, v.166
Indexed
SCIE
SCOPUS
Journal Title
EXPERT SYSTEMS WITH APPLICATIONS
Volume
166
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/49465
DOI
10.1016/j.eswa.2020.114066
ISSN
0957-4174
Abstract
In recent years, vehicular technology has rapidly evolved in terms of the driver's convenience and safety, along with the convergence of vehicle communication and the expansion of external interfaces. However, the connectivity of the vehicle to the external environment poses a considerable driving risk because of the pre-existing vulnerabilities in the vehicle. Furthermore, most of the in-vehicle networks, such as controller area network (CAN), local interconnect network (LIN), and FlexRay network, are not ready to cope with malicious attacks from the outside. For that reason, various studies have addressed the security issues of the automobiles, as protecting the life and safety of the drivers and passengers is one of the core values of the in-vehicle technology. In the present study, in order to address these critical security issues, we propose an anomaly detection method based on cosine similarity for in-vehicle network through the analysis of self-similarity of the CAN bus. Our main goal is to detect three types of injection attacks without having additional information about the attacks. To this end, we evaluated the performance of the proposed method by measuring the accuracy and detection time using a dataset extracted from two real vehicles in driving and stationary conditions. More specifically, we designed a lightweight feature vector that can accomplish real-time detection and then analyzed the performance in terms of accuracy, recall, and detection time by the time window. In the performance evaluation, we achieved high detection accuracy-namely, 98.93% and 99.18% for KIA Soul in the driving condition and in the stationary condition, respectively, 99.43% and 99.49% for the HYUNDAI YF Sonata in the driving condition and in the stationary condition, respectively. Finally, we also showed that the cosine similarity in the CAN bus is a meaningful feature to identify and classify the types of attacks on target CAN IDs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Cyber Security > Department of Information Security > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE