Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Entanglement via rotational blockade of MgF molecules in a magic potential

Authors
Chae, Eunmi
Issue Date
14-1월-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.23, no.2, pp.1215 - 1220
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume
23
Number
2
Start Page
1215
End Page
1220
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50114
DOI
10.1039/d0cp04042h
ISSN
1463-9076
Abstract
Diatomic polar molecules are one of the most promising platforms of quantum computing due to their rich internal states and large electric dipole moments. Here, we propose entangling rotational states of MgF molecules in an optical tweezer array via strong electric dipole-dipole interactions. We employ two rotational states with the projection quantum number of the total angular momentum M-F = 0 to maximize the dipole-dipole interaction with a given separation distance. The splitting of 1.27 kHz between two entangled states is predicted for MgF molecules separated by 1 mu m. The resolution of the entangled states can be achieved in a magic optical potential where the rotational states have the same trap frequencies. The magic potential can be formed by tuning the angle between the molecules' quantization axis and the linear polarization of trapping light to a "magic angle". We calculate the magic angle for MgF molecules under reasonable experimental conditions and obtain that the trap frequencies of the two involved states can be matched within a few 10s of Hz. By establishing an entanglement scheme for the molecules, our results provide a first step towards quantum computing using MgF molecules.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE