Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Impact of Absorber Layer Morphology on Photovoltaic Properties in Solution-Processed Chalcopyrite Solar Cells

Authors
Kim, Joo-HyunBae, SoohyunMin, Byoung Koun
Issue Date
13-Jan-2021
Publisher
AMER CHEMICAL SOC
Keywords
chalcopyrite solar cell; solution process; average grain size; precursor-based; nanoparticle-based
Citation
ACS APPLIED MATERIALS & INTERFACES, v.13, no.1, pp.34 - 47
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
13
Number
1
Start Page
34
End Page
47
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50117
DOI
10.1021/acsami.0c17496
ISSN
1944-8244
Abstract
Solution-processed chalcopyrite solar cells can be economically produced on a large scale; however, for them to be commercially viable, their low efficiency and detrimental processing have to be overcome. To this end, extensive research efforts have been devoted to boost device efficiency and develop benign solution processes. In this review, relevant processes are categorized into molecular-based and particulate-based solution processes, and progress is evaluated in terms of device performance and processing. To identify strategies for improving device performance, the key parameters affecting the optoelectronic properties of the device are discussed. Interestingly, the authors found an unnoticed fact from previously reported experimental results in literature: short-circuit current density increases and deficit of open-circuit voltage decreases as the average domain size of the absorber layer increases. In addition, the power conversion efficiency increases with the grain size irrespective of the band gap, thickness, and processing conditions. Ensuring a large grain size is specifically elucidated to be necessary to increase the photocurrent generation and reduce the charge carrier recombination in the chalcopyrite solar cells. The findings and related reviews afford critical insight into the absorber film design to improve the performance of solution-processed chalcopyrite solar cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE