Detailed Information

Cited 4 time in webofscience Cited 6 time in scopus
Metadata Downloads

Experimental and theoretical investigation of a high performance PTFE membrane for vacuum-membrane distillation

Authors
Kim, HyunhoYun, TaekgeunHong, SeungkwanLee, Seockheon
Issue Date
1-1월-2021
Publisher
ELSEVIER
Keywords
Membrane distillation; Vacuum membrane distillation; Desalination; Heat and mass transfer analysis
Citation
JOURNAL OF MEMBRANE SCIENCE, v.617
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MEMBRANE SCIENCE
Volume
617
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50170
DOI
10.1016/j.memsci.2020.118524
ISSN
0376-7388
Abstract
Vacuum-membrane distillation (VMD) is a membrane-based separation process that utilizes hydrophobic membrane and vacuum pressure to distillate hot saline feed stream into high purity fresh water. Despite the recent interests in the VMD, comprehensive membrane characterization and theoretical performance analysis relevant to system-level scales are limited. In this work, we present experimental and theoretical investigation of a commercial high performance PTFE membrane for the VMD application. With a careful examination of the membrane properties with a module that captures both hydrodynamic and thermal behaviors with coupled heat and mass transfer analysis, we evaluated the membrane distillation performances. Because laboratory observation does not elucidate larger scale performances, experimentally validated theoretical model is used to evaluate the performances of a PTFE membrane-based single-stage VMD system with a module length of up to 10 m at salinities of 30 and 60 g/kg. Influence of various operating conditions, such as feed temperatures, mass flow rates, and vacuum pressures, as well as temperature and concentration polarizations on the desalination performances are examined. We show that the PTFE membrane investigated in this study can generate high permeate fluxes at the system-scale, a promising candidate membrane for the VMD application.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Seung kwan photo

Hong, Seung kwan
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE