Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of virtual reality visualization model (VRVM) with relative spatiotemporality for visual contents in molecular toxicology education

Authors
Kim, S.Heo, R.Chung, Y.Park, S.Kim, J.M.Kwon, M.P.Park, G.-H.Kim, M.-K.
Issue Date
1월-2021
Publisher
Springer Verlag
Keywords
Education; Metabolism; Molecular toxicology; Spatiotemporality; Virtual reality visualization model (VRVM)
Citation
Molecular and Cellular Toxicology, v.17, no.1, pp.79 - 88
Indexed
SCIE
SCOPUS
Journal Title
Molecular and Cellular Toxicology
Volume
17
Number
1
Start Page
79
End Page
88
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50732
DOI
10.1007/s13273-020-00112-7
ISSN
1738-642X
Abstract
Background: Visualizing educational contents makes learning more efficient and effective especially in the area such as molecular toxicology, which is time consuming and intellectually taxing to learn. Objective: A design principle based on cognitive neuroscience was developed for spatiotemporality of information and optimized virtual reality (VR) for molecular toxicology. We modeled VR with the tricarboxylic acid (TCA) cycle, a major working mechanism of several toxic poisons such as fluoroacetate, malonate, arsenite, etc. to improve the effectiveness of education in molecular toxicology for better recall compared to traditional education methods. Results: We devised an educational system and theoretical basis for virtual reality visualization model (VRVM), as integrated research in this area had been insufficient thus far. We found that VRVM has positive effects on learning and memory when teaching complex topics such as molecular toxicology in our previous study. Conclusions: This study has three main components: (1) construction of VR hardware/software (HW/SW) system; (2) creation of VR space design guide; and (3) verification of VRVM spatiotemporality. Consequently, we developed VRVM for the TCA cycle of toxicological mechanism to improve the study habits of medical students in the context of molecular toxicology studies. To continuously expand this approach for future educational applications, up-to-date findings in areas such as cognitive neuroscience and psychology for studying molecular toxicology should be incorporated to strengthen concepts, logic, and physical models of visualization. © 2020, The Korean Society of Toxicogenomics and Toxicoproteomics.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE