Detailed Information

Cited 9 time in webofscience Cited 10 time in scopus
Metadata Downloads

Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures

Authors
Jo, Yong HeeYang, JunhaDoh, Kyung-YeonAn, WoojinKim, Dae WoongSung, HyokyungLee, DonghwaKim, Hyoung SeopSohn, Seok SuLee, Sunghak
Issue Date
5-12월-2020
Publisher
ELSEVIER SCIENCE SA
Keywords
High-entropy alloy (HEA); Fracture toughness; Transformation-induced plasticity (TRIP); Cryogenic temperature; Stacking fault energy
Citation
JOURNAL OF ALLOYS AND COMPOUNDS, v.844
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF ALLOYS AND COMPOUNDS
Volume
844
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50846
DOI
10.1016/j.jallcom.2020.156090
ISSN
0925-8388
Abstract
A single-phase face-centered-cubic (FCC) high- or medium-entropy alloys (HEAs or MEAs) have attracted great attentions due to their novel damage-tolerance properties (strength, ductility, and fracture toughness) by generating nano-twins at cryogenic temperature. The fracture toughness assessment is essential for evaluating the reliability of high-performance materials for cryogenic applications; however, fracture studies on single-phase FCC HEAs showing transformation-induced plasticity (TRIP) have been hardly conducted. In this study, thus, damage-tolerance mechanisms of a V10Cr10Fe45Co30Ni5 HEA showing the FCC to body-centered-cubic (BCC) TRIP were investigated at room and cryogenic temperatures. At room temperature (298 K), the alloy shows the tensile strength of 731 MPa, elongation of 40%, and fracture toughness (K-JIc) of 230 MPa m(1/2). At cryogenic temperature (77 K), the strength and elongation improve to 1.2 GPa and 66%, respectively, while the K-JIc remains almost constant at 237 MPa m(1/2). Dislocation-mediated plasticity prevails at 298 K; however, the TRIP from FCC to BCC occurs at 77 K. Deformation and fracture mechanisms are analyzed by stacking fault energies and differences in Gibbs free energies between phases calculated by ab-initio methods, and are compared to those of CrMnFeCoNi, CrCoNi, Fe50Mn30Co10Cr10, and V10Cr10Fe45Co20Ni15 alloys. Despite the presence of a considerable amount of BCC which is intrinsically brittle at low temperature, the transformed BCC martensite shows ductile fracture after the fracture toughness test even in cryogenic environments. These results demonstrate that the FCC to BCC TRIP can be an attractive route in a field of HEA design to overcome the strength and toughness trade-off at cryogenic temperature. (C) 2020 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sohn, Seok Su photo

Sohn, Seok Su
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE