Potential Regulatory Role of Human-Carboxylesterase-1 Glycosylation in Liver Cancer Cell Growth
- Authors
- Na, Keun; Kim, Minjoo; Kim, Chae-Yeon; Lim, Jong-Sun; Cho, Jin-Young; Shin, Heon; Lee, Hyo Jin; Kang, Byeong Jun; Han, Dai Hoon; Kim, Hoguen; Baik, Ja-Hyun; Swiatek-de Lange, Magdalena; Karl, Johann; Paik, Young-Ki
- Issue Date
- 4-12월-2020
- Publisher
- AMER CHEMICAL SOC
- Keywords
- hepatocellular carcinoma; carboxylesterase 1; glycosylation; transcriptomics; proteomics
- Citation
- JOURNAL OF PROTEOME RESEARCH, v.19, no.12, pp.4867 - 4883
- Indexed
- SCIE
SCOPUS
- Journal Title
- JOURNAL OF PROTEOME RESEARCH
- Volume
- 19
- Number
- 12
- Start Page
- 4867
- End Page
- 4883
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/50850
- DOI
- 10.1021/acs.jproteome.0c00787
- ISSN
- 1535-3893
- Abstract
- We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKC mu signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Life Sciences > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.