Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Interstitial Engineering toward Stable Tin Halide Perovskite Solar Cells

Authors
Heo, Jin HyuckPark, Jong-GooIm, Sang HyukHong, Ki-Ha
Issue Date
12월-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
alkali metals; density functional theory; lead-free; tin perovskites
Citation
SOLAR RRL, v.4, no.12
Indexed
SCIE
SCOPUS
Journal Title
SOLAR RRL
Volume
4
Number
12
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50906
DOI
10.1002/solr.202000513
ISSN
2367-198X
Abstract
Sn-based halide perovskites are the most promising alternatives for developing Pb-free perovskite solar cell materials. However, the stability of Sn halide perovskites is the biggest concern for future developments. The phase stability and the doping-level control should be resolved for Sn perovskites to compete with Pb-based analogs. Herein, interstitial engineering is used to enhance the stability of Sn-based halide perovskites using alkali metals through ab initio calculations and controlled experiments. This study reveals that alkali metal interstitials can promote the performance of Sn perovskites by controlling their phase stability, suppressing free carrier density, and locking lattice vibration. K(+)shows the most promising behavior among alkali-metal cations in terms of phase stabilization and defect formation energy.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE