Detailed Information

Cited 5 time in webofscience Cited 8 time in scopus
Metadata Downloads

Multifunctional Charge Transporting Materials for Perovskite Light-Emitting Diodes

Authors
Jeong, Ji-EunPark, Jong HyunJang, Chung HyeonSong, Myoung HoonWoo, Han Young
Issue Date
12월-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
charge transporting layers; light-emitting diodes; multifunctional layers; perovskites
Citation
ADVANCED MATERIALS, v.32, no.51
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED MATERIALS
Volume
32
Number
51
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/50908
DOI
10.1002/adma.202002176
ISSN
0935-9648
Abstract
Despite their low exciton-binding energies, metal halide perovskites are extensively studied as light-emitting materials owing to narrow emission with high color purity, easy/wide color tunability, and high photoluminescence quantum yields. To improve the efficiency of perovskite light-emitting diodes (PeLEDs), much effort has been devoted to controlling the emitting layer morphologies to induce charge confinement and decrease the nonradiative recombination. The interfaces between the emitting layer and charge transporting layer (CTL) are vulnerable to various defects that deteriorate the efficiency and stability of the PeLEDs. Therefore, the establishment of multifunctional CTLs that can improve not only charge transport but also critical factors that influence device performance, such as defect passivation, morphology/phase control, ion migration suppression, and light outcoupling efficiency, are highly required. Herein, the fundamental limitations of perovskites as emitters (i.e., defects, morphological and phase instability, high refractive index with poor outcoupling) and the recent developments with regard to multifunctional CTLs to compensate such limitations are summarized, and their device applications are also reviewed. Finally, based on the importance of multifunctional CTLs, the outlook and research prospects of multifunctional CTLs for the further improvement of PeLEDs are discussed.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE