Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications
- Authors
- Yang, Wonseok; Lim, Dong-Kwon
- Issue Date
- 12월-2020
- Publisher
- WILEY-V C H VERLAG GMBH
- Keywords
- intra-nanogap structures; oligonucleotides; quantum tunneling; small molecules; surface-enhanced Raman scattering
- Citation
- ADVANCED MATERIALS, v.32, no.51
- Indexed
- SCIE
SCOPUS
- Journal Title
- ADVANCED MATERIALS
- Volume
- 32
- Number
- 51
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/51220
- DOI
- 10.1002/adma.202002219
- ISSN
- 0935-9648
- Abstract
- Plasmonic nanogap-enhanced Raman scattering has attracted considerable attention in the fields of Raman-based bioanalytical applications and materials science. Various strategies have been proposed to prepare nanostructures with an inter- or intra-nanogap for fundamental study models or applications. This report focuses on recent advances in synthetic methods to fabricate intra-nanogap structures with diverse dimensions, with detailed focus on the theory and bioanalytical applications. Synthetic strategies ranging from the use of a silica layer to small molecules, the use of polymers and galvanic replacement, are extensively investigated. Furthermore, various core structures, such as spherical, rod-, and cube-shaped, are widely studied, and greatly expand the diversity of plasmonic nanostructures with an intra-nanogap. Theoretical calculations, ranging from the first plasmonic hybridization model that is applied to a concentric Au-SiO2-Au nanosphere to the modern quantum corrected model, have evolved to accurately describe the plasmonic resonance property in concentric core-shell nanostructures with a subnanometer nanogap. The greatly enhanced and uniform Raman responses from the localized Raman reporter in the built-in nanogap have made it possible to achieve promising probes with an extraordinary high sensitivity in various formats, such as biomolecule detection, high-resolution cell imaging, and an in vivo imaging application.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.