Detailed Information

Cited 2 time in webofscience Cited 4 time in scopus
Metadata Downloads

Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems

Authors
Ko, YohanPark, HyunJungLee, ChanyongKang, YoonmookJun, Yongseok
Issue Date
12월-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
hybrid photovoltaic tandems; intermediate layers; perovskites; silicon; solar cells
Citation
ADVANCED MATERIALS, v.32, no.51
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED MATERIALS
Volume
32
Number
51
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/51238
DOI
10.1002/adma.202002196
ISSN
0935-9648
Abstract
Hybrid tandem solar cells offer the benefits of low cost and full solar spectrum utilization. Among the hybrid tandem structures explored to date, the most popular ones have four (simple stacking design) or two (terminal/tunneling layer addition design) terminal electrodes. Although the latter design is more cost-effective than the former, its widespread application is hindered by the difficulty of preparing an interface between two solar cell materials. The oldest approach to the in-series bonding of two or more bandgap solar cells relies on the introduction of a tunneling layer in multijunction III-V solar cells, but it has some limitations, e.g., the related materials/technologies are applicable only to III-V and certain other solar cells. Thus, alternative methods of realizing junction contacts based on the use of novel materials are highly sought after. Here, the strategies used to realize high-performance tandem cells are described, focusing on interface control in terms of bonding two or more solar cells for tandem approaches. The presented information is expected to aid the establishment of ideal methods of connecting two or more solar cells to obtain the highest performance for different solar cell choices with minimized energy loss through the interface.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL) > Department of Energy and Environment > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE