Detailed Information

Cited 1 time in webofscience Cited 3 time in scopus
Metadata Downloads

Nanoparticle-Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layer-by-Layer Assembly

Authors
Ko, YongminKwon, Cheong HoonLee, Seung WooCho, Jinhan
Issue Date
12월-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
energy electrodes; energy nanoparticles; layer-by-layer assembly; multilayers
Citation
ADVANCED MATERIALS, v.32, no.51
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED MATERIALS
Volume
32
Number
51
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/51388
DOI
10.1002/adma.202001924
ISSN
0935-9648
Abstract
Organic-ligand-based solution processes of metal and transition metal oxide (TMO) nanoparticles (NPs) have been widely studied for the preparation of electrode materials with desired electrical and electrochemical properties for various energy devices. However, the ligands adsorbed on NPs have a significant effect on the intrinsic properties of materials, thus influencing the performance of bulk electrodes assembled by NPs for energy devices. To resolve these critical drawbacks, numerous approaches have focused on developing unique surface chemistry that can exchange bulky ligands with small ligands or remove bulky ligands from NPs after NP deposition. In particular, recent studies have reported that the ligand-exchange-induced layer-by-layer (LE-LbL) assembly of NPs enables controlled assembly of NPs with the desired interparticle distance, and interfaces, dramatically improving the electrical/electrochemical performance of electrodes. This emerging approach also demonstrates that efficient surface ligand engineering can exploit the unique electrochemical properties of individual NPs and maximize the electrochemical performance of the resultant NP-assembled electrodes through improved charge transfer efficiency. This report focuses on how LE-LbL assembly can be effectively applied to NP-based energy storage/conversion electrodes. First, the basic principles of the LE-LbL approach are introduced and then recent progress on NP-based energy electrodes prepared via the LE-LbL approach is reviewed.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Jin han photo

Cho, Jin han
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE