Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Schizophrenia EEG Signal Classification Based on Swarm Intelligence Computing

Authors
Prabhakar, Sunil KumarRajaguru, HarikumarKim, Sun-Hee
Issue Date
30-Nov-2020
Publisher
HINDAWI LTD
Citation
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, v.2020
Indexed
SCIE
SCOPUS
Journal Title
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
Volume
2020
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/51442
DOI
10.1155/2020/8853835
ISSN
1687-5265
Abstract
One of the serious mental disorders where people interpret reality in an abnormal state is schizophrenia. A combination of extremely disordered thinking, delusion, and hallucination is caused due to schizophrenia, and the daily functions of a person are severely disturbed because of this disorder. A wide range of problems are caused due to schizophrenia such as disturbed thinking and behaviour. In the field of human neuroscience, the analysis of brain activity is quite an important research area. For general cognitive activity analysis, electroencephalography (EEG) signals are widely used as a low-resolution diagnosis tool. The EEG signals are a great boon to understand the abnormality of the brain disorders, especially schizophrenia. In this work, schizophrenia EEG signal classification is performed wherein, initially, features such as Detrend Fluctuation Analysis (DFA), Hurst Exponent, Recurrence Quantification Analysis (RQA), Sample Entropy, Fractal Dimension (FD), Kolmogorov Complexity, Hjorth exponent, Lempel Ziv Complexity (LZC), and Largest Lyapunov Exponent (LLE) are extracted initially. The extracted features are, then, optimized for selecting the best features through four types of optimization algorithms here such as Artificial Flora (AF) optimization, Glowworm Search (GS) optimization, Black Hole (BH) optimization, and Monkey Search (MS) optimization, and finally, it is classified through certain classifiers. The best results show that, for normal cases, a classification accuracy of 87.54% is obtained when BH optimization is utilized with Support Vector Machine-Radial Basis Function (SVM-RBF) kernel, and for schizophrenia cases, a classification accuracy of 92.17% is obtained when BH optimization is utilized with SVM-RBF kernel.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE