Smart forensic kit: Real-time estimation of postmortem interval using a highly sensitive gas sensor for microbial forensics
- Authors
- Shin, Joonchul; Song, Young Geun; Jung, Sung-Jin; Yoon, Taeehee; Kim, Gwang Su; Kim, Jeong Hun; Park, Hyung-Ho; Ju, Byeong-Kwon; Kim, Seong Keun; Baek, Seung-Hyub; Jung, Hyo-Il; Kang, Chong-Yun; Kim, Jin-Sang
- Issue Date
- 1-11월-2020
- Publisher
- ELSEVIER SCIENCE SA
- Keywords
- Postmortem interval; Colorimetric analysis; Polymer-based gas sensor; Bromophenol blue; Bacteria
- Citation
- SENSORS AND ACTUATORS B-CHEMICAL, v.322
- Indexed
- SCIE
SCOPUS
- Journal Title
- SENSORS AND ACTUATORS B-CHEMICAL
- Volume
- 322
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/51858
- DOI
- 10.1016/j.snb.2020.128612
- ISSN
- 0925-4005
- Abstract
- Microbial forensics, exploiting bacteria, archaea, and eukaryotes, has been considered as one of the primary fields to trace the postmortem interval from the decaying cadavers. On the other hand, there remain several challenges of laboratory-based analysis for prediction of postmortem interval, including long-time measurement, complicated measuring procedure, and bacterial growth while carrying samples from the scene. Herein, we introduce the Smart Forensic Kit, which consists of a highly sensitive colorimetric gas sensor, a quality control algorithm, and a smartphone-based analysis method, to quantify the bacterial-derived ammonia gas in real-time. As a result, the estimation system of the postmortem interval has a superior selectivity to the ammonia gas with a detection limit of 38.7 ppb, response linearity to the target bacteria (Escherichia colt , Pseudomonas aeruginosa, and Pseudomonas putida), and short measuring time (10 min) with the maximum predicted postmortem interval from the mouse carcass (168 h). Furthermore, thanks to measuring the postmortem interval within 10 min, the negligible increase rate of bacterial concentration was observed. Consequently, the results reflected a high correlation between the ammonia gas emitted from bacteria and the postmortem interval so that we believe the Smart Forensic Kit will be applied for tracing down the decomposition of the cadavers in the near future.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
- Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.