Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Large reduction in switching current driven by spin-orbit torque in W/CoFeB heterostructures with W-N interfacial layers

Authors
Kim, Yong JinLee, Min HyeokKim, Gyu WonKim, TaehyunCha, In HoNguyen, Quynh Anh T.Rhim, Sonny H.Kim, Young Keun
Issue Date
11월-2020
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
W-N layer; Microstructure; Interface; Spin-orbit torque; Switching current
Citation
ACTA MATERIALIA, v.200, pp.551 - 558
Indexed
SCIE
SCOPUS
Journal Title
ACTA MATERIALIA
Volume
200
Start Page
551
End Page
558
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52036
DOI
10.1016/j.actamat.2020.09.032
ISSN
1359-6454
Abstract
Injecting an electrical current into a nonmagnetic layer toward the in-plane direction can reverse the magnetization direction of an adjacent ferromagnetic layer in a nonmagnet/ferromagnet heterostructure via spin-orbit torque (SOT). One of the most critical issues for memory and logic device applications is to reduce the critical current to assure low energy consumption. Herein, we report both enhanced SOT efficiency and reduced SOT-induced switching current in perpendicularly magnetized W/CoFeB heterostructures, where ultrathin tungsten nitride (W-N) layers with various N-compositions and thicknesses are placed in between W and CoFeB layers. The composition of the W-N layers affects the microstructure and, therefore, the electrical properties. The measured SOT efficiency is 0.54, and the switching current reduces to approximately one-fifth of its original value in the 0.2-nm-thick W-N layer sample containing 42 at% N. Our results suggest interface engineering is a practical approach to reduce switching current. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Keun photo

Kim, Young Keun
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE