Detailed Information

Cited 6 time in webofscience Cited 5 time in scopus
Metadata Downloads

Can we predict real-timefMRIneurofeedback learning success from pretraining brain activity?

Authors
Haugg, AmelieSladky, RonaldSkouras, StavrosMcDonald, AmaliaCraddock, CameronKirschner, MatthiasHerdener, MarcusKoush, YuryPapoutsi, MarinaKeynan, Jackob N.Hendler, TalmaCohen Kadosh, KathrinZich, CatharinaMacInnes, JeffAdcock, AlisonDickerson, KathrynChen, Nan-KueiYoung, KymberlyBodurka, JerzyYao, ShuxiaBecker, BenjaminAuer, TiborSchweizer, RenatePamplona, GustavoEmmert, KirstenHaller, Svenvan de Ville, DimitriBlefari, Maria-LauraKim, Dong-YoulLee, Jong-HwanMarins, TheoFukuda, MegumiSorger, BettinaKamp, TabeaLiew, Sook-LeiVeit, RalfSpetter, MaartjeWeiskopf, NikolausScharnowski, Frank
Issue Date
1-10월-2020
Publisher
WILEY
Keywords
fMRI; functional neuroimaging; learning; meta-analysis; neurofeedback; real-time fMRI
Citation
HUMAN BRAIN MAPPING, v.41, no.14, pp.3839 - 3854
Indexed
SCIE
SCOPUS
Journal Title
HUMAN BRAIN MAPPING
Volume
41
Number
14
Start Page
3839
End Page
3854
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52507
DOI
10.1002/hbm.25089
ISSN
1065-9471
Abstract
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Brain and Cognitive Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Jong Hwan photo

LEE, Jong Hwan
뇌공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE