Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A new approach for CMS RPC current monitoring using Machine Learning techniques

Authors
Samalan, A.Tytgat, M.Zaganidis, N.Alves, G. A.Marujo, F.Da Silva De Araujo, F. TorresDa Costa, E. M.De Jesus Damiao, D.Nogima, H.Santoro, A.Fonseca De Souza, S.Aleksandrov, A.Hadjiiska, R.Iaydjiev, P.Rodozov, M.Shopova, M.Sultanov, G.Bonchev, M.Dimitrov, A.Litov, L.Pavlov, B.Petkov, P.Petrov, A.Qian, S. J.Bernal, C.Cabrera, A.Fraga, J.Sarkar, A.Elsayed, S.Assran, Y.El Sawy, M.Mahmoud, M. A.Mohammed, Y.Combaret, C.Gouzevitch, M.Grenier, G.Laktineh, IMirabito, L.Shchablo, K.Bagaturia, ILomidze, D.Lomidze, IBhatnagar, VGupta, R.Kumari, P.Singh, J.Amoozegar, VBoghrati, B.Ebraimi, M.Ghasemi, R.Najafabadi, M. MohammadiZareian, E.Abbrescia, M.Aly, R.Elmetenawee, W.Filippis, N.Gelmi, A.Iaselli, G.Leszki, S.Loddo, F.Margjeka, IPugliese, G.Ramos, D.Benussi, L.Bianco, S.Piccolo, D.Buontempo, S.Di Crescenzo, A.Fienga, F.De Lellis, G.Lista, L.Meola, S.Paolucci, P.Braghieri, A.Salvini, P.Montagna, P.Riccardi, C.Vitulo, P.Francois, B.Kim, T. J.Park, J.Choi, S. Y.Hong, B.Lee, K. S.Goh, J.Lee, H.Eysermans, J.Uribe Estrada, C.Pedraza, ICastilla-Valdez, H.Sanchez-Hernandez, A.Mondragon Herrera, C. A.Perez Navarro, D. A.Ayala Sanchez, G. A.Carrillo, S.Vazquez, E.Radi, A.Ahmad, A.Asghar, IHoorani, H.Muhammad, S.Shah, M. A.Crottya, I
Issue Date
10월-2020
Publisher
IOP PUBLISHING LTD
Keywords
Large detector-systems performance; Resistive-plate chambers
Citation
JOURNAL OF INSTRUMENTATION, v.15, no.10
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF INSTRUMENTATION
Volume
15
Number
10
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52569
DOI
10.1088/1748-0221/15/10/C10009
ISSN
1748-0221
Abstract
The CMS experiment has 1054 RPCs in its muon system. Monitoring their currents is the first essential step towards maintaining the stability of the CMS RPC detector performance. The current depends on several parameters such as applied voltage, luminosity, environmental conditions, etc. Knowing the influence of these parameters on the RPC current is essential for the correct interpretation of its instabilities as they can be caused either by changes in external conditions or by malfunctioning of the detector in the ideal case. We propose a Machine Learning(ML) based approach to be used for monitoring the CMS RPC currents. The approach is crucial for the development of an automated monitoring system capable of warning for possible hardware problems at a very early stage, which will contribute further to the stable operation of the CMS RPC detector.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Byung sik photo

Hong, Byung sik
이과대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE